A Tyrosine-Hydroxylase Characterization of Dopaminergic Neurons in the Honey Bee Brain
نویسندگان
چکیده
Dopamine (DA) plays a fundamental role in insect behavior as it acts both as a general modulator of behavior and as a value system in associative learning where it mediates the reinforcing properties of unconditioned stimuli (US). Here we aimed at characterizing the dopaminergic neurons in the central nervous system of the honey bee, an insect that serves as an established model for the study of learning and memory. We used tyrosine hydroxylase (TH) immunoreactivity (ir) to ensure that the neurons detected synthesize DA endogenously. We found three main dopaminergic clusters, C1-C3, which had been previously described; the C1 cluster is located in a small region adjacent to the esophagus (ES) and the antennal lobe (AL); the C2 cluster is situated above the C1 cluster, between the AL and the vertical lobe (VL) of the mushroom body (MB); the C3 cluster is located below the calyces (CA) of the MB. In addition, we found a novel dopaminergic cluster, C4, located above the dorsomedial border of the lobula, which innervates the visual neuropils of the bee brain. Additional smaller processes and clusters were found and are described. The profuse dopaminergic innervation of the entire bee brain and the specific connectivity of DA neurons, with visual, olfactory and gustatory circuits, provide a foundation for a deeper understanding of how these sensory modules are modulated by DA, and the DA-dependent value-based associations that occur during associative learning.
منابع مشابه
Comparison of Rat Primary Midbrain Neurons Cultured in DMEM/F12 and Neurobasal Mediums
Introduction: Midbrain dopaminergic neurons are involved in various brain functions, including motor behavior, reinforcement, motivation, learning, and cognition. Primary dopaminergic neurons and also several lines of these cells are extensively used in cell culture studies. Primary dopaminergic neurons prepared from rodents have been cultured in both DMEM/F12 and neurobasal mediums in several ...
متن کاملNeuroprotective Effect of Exogenous Melatonin on Dopaminergic Neurons of the Substantia Nigra in Ovariectomized Rats
Background: Melatonin has receptors in substantia nigra pars compacta (SNc) and regulates development of dopaminergic (DA) neurons. This study was undertaken to determine ability of melatonin to protect SNc dopaminergic neuron loss induced by estrogen deficiency in ovariectomized rats. Methods: Female rats were randomized into four groups of seven each: control, ethanol sham, ovariectomy (ovx) ...
متن کاملThe effect of titanium dioxide nanoparticles on mice midbrain substantia nigra
Objective(s): Widely used Titanium dioxide nanoparticles (TiO2) enter into the body and cause various organ damages. Therefore, we aimed to study the effect of TiO2 on the substantia nigra of midbrain. Materials and Methods: 40 male BALB/c mice were randomly divided into five groups: three groups received TiO2 at doses of 10, 25, and 50 ...
متن کاملIrisin protect the Dopaminergic neurons of the Substantia nigra in the rat model of Parkinson’s disease
Objective(s): Exercise ameliorates the quality of life and reduces the risk of neurological derangements such as Alzheimer’s (AD) and Parkinson’s disease (PD). Irisin is a product of the physical activity and is a circulating hormone that regulates the energy metabolism in the body. In the nervous system, Irisin influences neurogenesis and neural differentiation in mic...
متن کاملDivision of labor in the honey bee (Apis mellifera): the role of tyramine beta-hydroxylase.
The biogenic amine octopamine (OA) is involved in the regulation of honey bee behavioral development; brain levels are higher in foragers than bees working in the hive, especially in the antennal lobes, and treatment causes precocious foraging. We measured brain mRNA and protein activity of tyramine beta-hydroxylase (T betah), an enzyme vital for OA synthesis, in order to begin testing the hypo...
متن کامل